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SUMMARY 

A new method has been developed for the computation of steady two-dimensional full-potential transonic 
flow past symmetric aerofoils. This method utilizes von Mises variables (x,+), where JI is taken as the 
streamfunction for the flow. The flow equations and appropriate boundary conditions are formulated in 
terms of the von Mises variables (x, +) for symmetric aerofoils at zero incidence. This yields a system of two 
equations for unknowns p ( x ,  $) and y(x, $). Finite difference solutions have been computed using SLOR at  
subcritical and supercritical Mach numbers. The results are compared with available data and are in 
excellent agreement. 
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1. INTRODUCTION 

Martin,’ in a study of incompressible viscous fluids, introduced a natural curvilinear co-ordinate 
system (+,$) in the physical plane ( x , y )  to investigate the geometry of flows. This ‘streamline’ 
method, $ being the streamfunction, was first used by Grossman and Barron2 to study 
incompressible inviscid flows numerically. They found that it was not possible to determine 
analytically where the leading and trailing edges are mapped into the (4, $) system and that 
numerically obtained values for the leading and trailing edges are not very accurate, resulting in 
inaccuracies in the solution near these points. During a study of inviscid incompressible flows, 
Barron3 found that by introducing von Mises variables (x, $), one knows exactly where the leading 
and trailing edges are mapped in the (x, $) plane and inaccuracies in the solution near the leading 
and trailing edges can be eliminated. 

In Barron’s approach the co-ordinate $ is taken as the streamfunction for the flow being 
considered. This approach provides a rectangular computational domain, circumventing the need 
to do grid generation. Furthermore, a Dirichlet formulation of the problem is possible. In the 
present paper we have extended Barron’s approach to the case of inviscid compressible fluids. The 
flow equations are transformed into von Mises variables and are solved subject to appropriate 
boundary conditions for a class of transonic flows over symmetric aerofoils. The class that has 
been considered is that for which the flow is isentropic and irrotational. Subcritical and 
supercritical cases have been considered and computed results are in excellent agreement with 
available results. 
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2. FLOW EQUATIONS 

The steady two-dimensional adiabatic flow of an inviscid compressible fluid is governed by the 
following system of equations: 

(pu) ,  + = 0 (continuity), (1) 

(Navier-Stokes), 

(energy), 

p(uux + VUJ + p x  = 0 
p(uvx+vv , )+p ,  = o  

US, + US, = 0 

P = P (P, S )  (state equation). (4) 

This is a system of four equations wherein p is the density, p the pressure, S the specific entropy, 
and u and v are the velocity components in the x and y directions. For convenience in the following 
analysis, the dependent variables are non-dimensionalized by free stream quantities p , ,  V,, p ,  
and S ,  , while the independent variables are non-dimensionalized by the characteristic length L. 

On introducing the vorticity function w defined by 

w = V , - U y ,  

equation (2) is replaced by [G +;Ix - v o  +pz PPX = 0, 

[?+ ;Iy + uo + PPY p2 - - 0, 

where V 2  = u2 + v2 .  
Following Martin,' we introduce curvilinear co-ordinates #, $ in which the curves tj = constant 

are later taken as the streamlines and the curves # = constant are left arbitrary so that the physical 
co-ordinates x, y can be replaced by #, $. 

Let 
r = (x, Y )  = r(4, $1 (7) 

define a system of curvilinear co-ordinates in the ( x , y )  plane such that the Jacobian J defined by 

J = ITQ, x rJIl 

is non-zero in the region of interest. 
The squared element of arc length can be represented by 

where the metrics are given by 
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Let a(+, +) be the angle between the tangent vector (x,, yb)  to the co-ordinate line +=constant 
and the x-axis; then' 

r, = J E  (cos a, sin u), 

F J 
r, = JE (cos a, sin a) -JE (sin a, - cos a), 

where r:, and I':, are Christoffel symbols given by 

1 
I-: = 252 - FE, + 2EF+ - EE,] ,  

The integrability condition on a, i.e. a*, = aJtb, leads to the Gauss equation 

where W = J ( E G - F 2 )  and K is called the Gaussian curvature. This equation represents a 
necessary and sufficient condition that E,  F and G are the coefficients of the first fundamental 
form (8). 

We now proceed to write equations (1) and (3H4) in the (4, +)curvilinear co-ordinates, where 
is defined as the streamfunction. Equation (1) implies the existence of the streamfunction +(x, y )  
such that 

PU = +YY pu= -+x .  (12) 

E = p2J2 V 2 ,  (13) 

J~ = E G - F ~ .  (14) 

Chandna et al? have shown that the equation of continuity (1) is equivalent to 

where 

The momentum equations (6) become 

[q+;],+y = 0, 

[7 + $1, + 9 + y = 0. 

In Reference 4 it has also been shown that the vorticity function (5) in the (+,+) system is given 
by 

+(") w P W ,  -(L) P W ,  1. 
Employing equations (10) and (2) in (3), we obtain, after some manipulation, 

s, = 0. (17) 
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Hence, 
equation 
system is 

in the (c$,$) system, the flow is governed by equations (4), (13), (15H17) and the Gauss 
(1 1). These are seven equations for the eight unknowns E,  F ,  G ,  V, p, p, o and S.  This 
undetermined as a result of the arbitrariness in the function 4. 

3. VON MISES TRANSFORMATION 

Barron3 indicated that for irrotational flows the arbitrariness of c$ causes difficulties, particularly 
in the location of the leading and trailing edges and in the application of the flow tangency 
condition on the surface of the body. To overcome these difficulties, he introduced von Mises 
variables (x, $) through the transformation 

x = 4, Y = Y ( 4 ,  $1. (1 8) 

On introducing these von Mises variables (x, $), equations (4), (1 3) and (1 5H17) are replaced by 
the following equations: 

J E = p V W ,  (19) 

[ q + g ] , + 7 = 0 ,  
[ 7 + ; l J l + P + ' = 0 ,  0.) PPJl 

~ = a [ ( 3 , - ( 3 , ] 7  
P 

s, = 0, (23) 

where 

Here we have assumed that J = W > 0, which is equivalent to requiring that the fluid flows from 
lower to higher values of 4,l i.e. in the direction of the positive x-axis. 

(25) 
Let 

Y =f (4 
be the equation of the upper surface of a symmetric aerofoil and assume that flow is uniform in the 
far field, parallel to the chord of the aerofoil. In the physical plane the appropriate boundary 
conditions are 

(i) far-field conditions: 

p = l  
u = l ]  asxZ+yZ+co, 

f'(4 on Y =fW, xLE < x d xTE, 

v = o  

(ii) tangency conditions and flow symmetry: 

on y=O,  x <xLE or x > xTE, 
VIU = 

where the prime represents the derivative with respect to x, and xLE and xTE denote the leading and 
trailing edges respectively. 
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These conditions are conveniently expressed in the (x,t,b) plane by referring to the aerofoil 

(i) far-field conditions: 

surface as a segment of the streamline J/ = 0. We have 

” = ’ )  at oo, 
Y = +  

(ii) tangency condition and flow symmetry: 

(29) 

As mentioned in the introduction, we are interested in that class of transonic flows which are 

x) on t,b = 0, xLE < x < xTE, 

ont,b=O, - w < x < x L E  or x T E < x < w .  Y = {;( 

irrotational and isentropic. Therefore the state equation in non-dimensional form is 

P = PY/YM2,, Mm = V m / a m ,  (30) 
where y (  = 1.4 for air) is the adiabatic constant, and M ,  and a ,  are the free stream Mach number 
and speed of sound respectively. 

Employing (19) and (30) in (20), (21) and integrating (with u = 0), we get 

which is Bernoulli’s equation. 

(22) yields 
Taking w = 0, using the expressions for E,  F and W in terms of yx and y,, and expanding 

2 Y f Y x P x  Y,(l + Y 3 P ,  
Y,Yxx-2YxY,Y,x+(1 + Y 3 Y , ,  =-- 

P P 

It should be noted that the above equation is the extension of the incompressible potential flow 
equation to compressible full-potential flow. For constant density the right-hand side of (32) is 
zero.3 

Summarizing, the well posed boundary value problem for full-potential transonic flow over 
symmetric aerofoils is to solve equations (31 )  and (32) subject to boundary conditions (28) and (29). 

One can easily show that the pressure coefficient is given by 

C ,  = 2 ( p y -  l ) / y M L ,  (33) 
The Bernoulli equation ( 3 1 )  can be rewritten as 

This equation implies that there are two values of the density for a certain mass flux less than the 
maximum value which can be attained.5 For purely subsonic or supersonic flows one can easily 
decide which value to choose depending upon whether p is larger or smaller than p*, the value of 
the density at the critical speed of sound a*, respectively. For mixed flows it is not obvious which 
value to choose. To overcome this problem, researchers have developed artificial viscosity6 and 
artificial ~ompressibility’~~ methods. In both methods the density is modified by introducing an 
artificial viscosity term which vanishes in subsonic regions. Details can be obtained from 
Reference 6. 
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In our calculations we employ an expression for the modified density which is similar to that 
proposed by Hafez et al’. The modified density 5 is given by 

P = P-(PP&). (35)  

(36) p = max (0, 1 - 1/M2), 
Here p is the switching function, which vanishes in the subsonic region, defined by 

where M is the local Mach number. 

4. DISCRETIZATION OF EQUATIONS 

Equation (32)  is discretized by using central differencing for all derivatives everywhere. This leads 
to a large system of non-linear algebraic equations in unknown y at the grid points. The finite 
difference approximation of equation (32)  at an ( i , j )  grid point is 

A l ( ~ i + , , j - 2 ~ i j + ~ i -  l . j ) + A ~ ( Y i + l , j + l  +Yi- 1,j-1-Yi-l,j+l-Yi+ t < j - l )  

where 

,uij = max (0, 1 - 1 /h4:.), p* = A x f A $ .  

Equation (37)  in matrix form can be written as 

Ny = R, (38) 
where the matrix N contains the coefficients A,, A, and A,, the elements of y consist of the 
function y for each point in the computational domain, and the vector R contains specified 
boundary values and the right-hand side of (37).  
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In the entire flow region p and 5 are computed using central differencing for derivatives y ,  and 
yJ, except along the line II/ = 0. Along II/ = 0 (i.e. j = l), yJ, and y, are computed from 

For speed calculations, differencing for derivatives yJI and y, is the same as above except in the 
supersonic region, where y, is computed from 

y..-y. i - Z , j  
Yxlij = I' 2AX * 

The matrix equation (38) was solved using SLOR. In order to improve the accuracy, to reduce 
CPU time and to pack grid lines near the aerofoil and at the leading and trailing edges, we 
introduce stretching transformations in the next section. 

5. STRETCHING TRANSFORMATIONS 

Following Jones,g we introduce transformations defined by 

x = A  tantexp(-8t2), 
$ = D tan?. (39) 

These transformations transfer x = f 00 and $ = -t 00 to < = f x / 2  and q = i x/2 respectively. 
Another benefit of these transformations is that they provide us with a dense mesh in the vicinity of 
the aerofoil. The former helps to make mesh points more dense near leading and trailing edges of 
the aerofoil and the latter packs more points near the x-axis. 

For convenience in handling the boundary conditions at infinity, we introduce a new variable Y 
defined by 

y =  Y++.  (40) 

Employing (39) and (40) in (32), we get 

and 5 is defined in Section 4. 
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The boundary conditions in the (5 ,  q) system are 

Here g,, and [TE are the values of xLE and xTE respectively in the (5,q) plane. 

algorithm are the same as in Section 4. 
The discretization of equations in the stretched co-ordinates and the corresponding numerical 

6. RESULTS AND DISCUSSION 

During the investigation it was found that if the term px in (35) is calculated from (31), the results 
obtained are more satisfactory. Throughout the calculations p and are relaxed through the 
relations 

p @ + l ) =  (1 - w , ) p $ ) + o ,  [equation (34)]("), 

where n is the nth iteration level, and 0, and w2 are relaxation parameters. After some 
experimentation it was found that the values 0.7 and 0 5  for relaxation parameters o1 and w2 
respectively give the most satisfactory results. For our purpose the constants A, B and D in 
transformation (39) are kept constant at 0.9,0.6 and 0.4 respectively. Jones' has discussed in detail 
how the constants in transformation (39) are chosen. 

The NACA 0012-64 and 6% circular arc aerofoils were tested with this new formulation. The 
results have been computed for these aerofoils at subcritical and supercritical Mach numbers. 
Uniform and stretched grids were employed. Comparisons with the results obtained by other 
researchers have been made in Figures 1-4. For subcritical flows (Figures 1, 2 and 4) excellent 

.6  I 
- c  

P 

Figure 1 .  Surface pressure distribution, NACA 0012, M, = 0.63: A, panel method;'O 0,  Sinclair;lo 
-, Garabedian-Korn;' 0, present (non-stretched co-ordinates); x , present (stretched co-ordinates) 
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agreement is obtained on both the clustered and non-clustered grids. However, the same accuracy 
is achieved for the packed grid using about half as many grid points in each direction as compared 
to the non-clustered solution. Furthermore, the CPU time is reduced by a factor of about 1/5. The 
clustered grid solution provides slightly more accuracy for the supercritical flow at M, = 0.8 over 

- C  
P 

. 5  

0 

. 5  

- . 5  0 . 5  1.0 1 .5  

X 

Figure 2. Surface pressure distribution, NACA 0012, M ,  = 0.7: -.-, irrotational;' -, Hafez-Lovell;8 0, present 
(non-stretched co-ordinates); x , present (stretched co-ordinates) 

0.9 

- c  
P 

0.0 

-0.3 
0 1 .o 

X 

Figure 3. Surface pressure distribution, NACA 0012, M ,  = 0.8: 0,  Sinclair;lo -, Garabedian-Korn;" 0, present 
(non-stretched grid); x , present (stretched grid) 
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- 0 . 3 1  
Figure 4. Surface pressure distribution, 6% circular arc aerofoil, M ,  = 0.817: %, Earl;'* 0, present (non-stretched 

grid); x , present (stretched grid) 

I 

10 20 30 40 50 60 70 80 90 100 110 

the NACA 0012 aerofoil, particularly aft of the shock wave. Both solutions compare favourably 
with the results of Sinclair" and Garabedian and Korn." 

The convergence history for the density is shown in Figure 5 for the NACA 0012. At subcritical 
free stream Mach numbers of 0.63 and 0.7 the convergence is very fast and well behaved. For the 



TRANSONIC FLOW PAST SYMMETRIC AEROFOILS 1193 

supercritical flow at M a  = 0-8 the error oscillates before damping out at approximately 100 
iterations. Runs were made at various grid sizes for all cases and the results presented correspond 
to clustered grids of 25 x 18, 35 x 15 and 49 x 16 for M a  = 0.63, 0.7 and 0-8 respectively. 

7. CONCLUSIONS 

Inviscid compressible potential equations have been transformed into von Mises variables (x, $), 
leading to a non-linear partial differential equation for the unknown y(x ,  i,b) and an algebraic 
equation for the density. The transonic flow over a symmetric aerofoil is formulated as a Dirichlet 
boundary value problem and solved using finite differences. The supersonic region which occurs in 
supercritical flow is handled using the modified density method. Results are in excellent agreement 
with previous results. The numerical algorithm is efficient and easy to code. 
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